Optimizing some constructions with bars: new geometric knapsack problems
نویسندگان
چکیده
A set of vertical bars planted on given points of a horizontal line defines a fence composed of the quadrilaterals bounded by successive bars. A set of bars in the plane, each having one endpoint at the origin, defines an umbrella composed of the triangles bounded by successive bars. Given a collection of bars, we study how to use them to build the fence or the umbrella of maximum total area. We present optimal algorithms for these constructions. The problems introduced in this paper are related to the Geometric Knapsack problems [Arkin et al., Algorithmica 1993] and the Rearrangement Inequality [Wayne, Scripta Math. 1946].
منابع مشابه
A Hybrid Quantum-inspired Artificial Bee Colony Algorithm for Combinatorial Optimization Problem: 0-1 Knapsack
This paper propose a new mixture method called Quantum Artificial Bee Colony (QABC) algorithm. QABC is based on some quantum computing concepts, such as qubits and superposition of states. In QABC these quantum concepts are applied on Artificial Bee Colony (ABC) algorithm. ABC is one of the recent algorithms in optimization area that has earned good popularity and some new works based on origin...
متن کاملBQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملA Robust Knapsack Based Constrained Portfolio Optimization
Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...
متن کاملThe Guided Improvement Algorithm for Exact, General-Purpose, Many-Objective Combinatorial Optimization
This paper presents a new general-purpose algorithm for exact solving of combinatorial many-objective optimization problems. We call this new algorithm the guided improvement algorithm . The algorithm is implemented on top of the non-optimizing relational constraint solver Kodkod [24]. We compare the performance of this new algorithm against two algorithms from the literature (Gavanelli [11], L...
متن کاملA dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Optim.
دوره 31 شماره
صفحات -
تاریخ انتشار 2016